C102. Hong YJ, Jeong MH, Choi YH, Ko JS, Lee MG, Kang WY, Lee SE, Kim SH, Park KH, Sim DS, Yoon NS, Youn HJ, Kim KH, Park HW, Kim JH, Ahn Y, Cho JG, Park JC, Kang JC; Impact of plaque components on no-reflow phenomenon after stent deployment in patients with acute coronary syndrome: a virtual histology-intravascular ultrasound analysis. Eur Heart J. 2011;32(16)2059-2066.
(Abstract)
AIMS:
We used virtual histology-intravascular ultrasound (VH-IVUS) to evaluate the relation between coronary plaque characteristics and no-reflow in acute coronary syndrome (ACS) patients.
METHODS AND RESULTS:
A total of 190 consecutive ACS patients were imaged using VH-IVUS and analysed retrospectively. Angiographic no-reflow was defined as TIMI flow grade 0, 1, and 2 after stenting. Virtual histology-intravascular ultrasound classified the colour-coded tissue into four major components: fibrotic, fibro-fatty, dense calcium, and necrotic core (NC). Thin-cap fibroatheroma (TCFA) was defined as focal, NC-rich (≥10% of the cross-sectional area) plaques being in contact with the lumen in a plaque burden≥40%. Of the 190 patients studied at pre-stenting, no-reflow was observed in 24 patients (12.6%) at post-stenting. The absolute and %NC areas at the minimum lumen sites (1.6±1.2 vs. 0.9±0.8 mm2, P<0.001, and 24.5±14.3 vs. 16.1±10.6%, P=0.001, respectively) and the absolute and %NC volumes (30±24 vs. 16±17 mm3, P=0.001, and 22±11 vs. 14±8%, P<0.001, respectively) were significantly greater, and the presence of at least one TCFA and multiple TCFAs within culprit lesions (71 vs. 36%, P=0.001, and 38 vs. 15%, P=0.005, respectively) was significantly more common in the no-reflow group compared with the normal-reflow group. In the multivariable analysis, %NC volume was the only independent predictor of no-reflow (odds ratio=1.126; 95% CI 1.045-1.214, P=0.002).
CONCLUSION:
In ACS patients, post-stenting no-reflow is associated with plaque components defined by VH-IVUS analysis with larger NC and more TCFAs.
|